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The objective of this paper is to describe approximately the coupled steady-state 
processes of light propagation and induced laminar incompressible fluid flow 
in the case of natural convection. 

For the case of a homogeneous fluid and under the assumptions that light 
energy is instantaneously transformed into heat and that the induced velocities 
are not too large, it is reasonable to use the boundary-layer equations to describe 
the induced natural flow. These equations are augmented by the conservation of 
energy equation. The velocity, temperature and intensity functions are expected 
to exhibit similarity properties. 

A high-intensity light beam with a given rotationally symmetric Gaussian 
initial intensity distribution is propagating vertically upwards into a fluid 
initially at rest. The fluid characteristics are assumed to be constant. A stream 
function is introduced to satisfy the conservation of mass equation. The conserva- 
tion of momentum equation leads to conditions on the unknown functions 
involved in the stream function. Additional conditions follow from the conserva- 
tion of energy equation, which involves the local light intensity as a driving term. 

Under the assumptions made, self-defocusing (thermal blooming) will occur. 
The main results are an exponential increase of the boundary-layer thickness and 
an exponential decrease of temperature and of light intensity due to the blooming 
effect in addition to the exponential decrease due to absorption. 

1. Introduction 
Light propagating through an absorbing fluid creates local changes in tempera- 

ture and, consequently, in density. Therefore, a fluid flow will be established by 
the buoyancy force. The resulting redistribution of temperature will affect the 
local light intensity distribution. Thus, a complicated coupled process of propa- 
gation of light, distribution of temperature and the corresponding flow in the 
fluid will take place. 

The aspects of this process become the more complicated the more one 
looks at  the details of the absorption process, i.e. the interaction of intense 
electromagnetic fields with the molecules of the fluid (which is responsible 
for their thermal agitation), and at the behaviour of the index of refraction. If 
the relaxation process is rapid (as for water, for example, under 10.6 pm 
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radiation), the absorbed energy is immediately transformed into heat, i.e. an 
instantaneous increase in the local temperature will be observed. There are also 
very slow relaxation processes (CO, under 10.6,um radiation). For these processes, 
cooling (at least temporarily) of the fluid occurs. In the first case, self- 
defocusing (thermal blooming) of the light beam takes place; in the second, 
a focusing effect is observed. 

In  recent years, a large number of publications have appeared which deal with 
the problems of light propagation through a fluid in general and, for obvious 
reasons, with the special case of 10.6,um laser-beam transmission in particular. 
We mention a few typical references: Livingston (1971), Hayes (1971, 1972), 
Wallace & Camac (1970), Wood, Camac & Gerry (1971), Hayes, Ulrich & Aitken 
(1972) and Gebhardt & Smith (1972). In  these publications, optical considerations 
(the wave or ray approach) have been put in the foreground and, with the 
exception of Livingston’s paper, the induced convective flow problem has 
essentially been ignored for various reasons. 

In  this paper, the objective will be different. For the case of steady-state 
natural convection induced by a continuous-wave light beam, emphasis will be 
put on the interaction between the propagation of light intensity and distribution 
of heat and the induced natural flow. We shall specifically be interested in the 
general functional dependence of the induced fluid flow and fluid temperature on 
the intensity distribution in space based on the determination of the intensity 
(Poynting flux) as a function of the spatial co-ordinates. In particular, we shall 
numerically determine the maximal flow velocity and the maximal air tempera- 
ture as functions of the initial intensity for vertical 10.6,um GO, laser light 
propagation in air. 

It is assumed that the fluid remains incompressible (Mach number very small 
compared with unity) and that the flow remains laminar. Furthermore, it is 
assumed that initially a parallel beam of light of a given axially symmetric 
Gaussian intensity distribution is propagating vertically upwards (in the z direc- 
tion) into a still homogeneous fluid of constant density p (g cm-3). The intensity 
will be restricted to reasonably small values, of the order of lo4 W cm-2, say, to 
avoid ionization of the fluid (Steverding 1972) and nonlinear effects which would 
make some of the physical parameters strongly dependent on temperature. The 
fluid may be characterized by its viscosity p (g em-1 s-1)’ kinematic viscosity 
v = pp-l (cm2s-l), specific heat at constant pressure cp (calg-l OC-l), conduc- 
tivity k (calcm-ls-loC-l) and absorption coefficient a! (cm-I), which are all 
considered as constants. It is also assumed that the molecular relaxation process 
is rapid so that the absorbed energy is instantaneously transformed into heat. 

The interaction process we are going to investigate may be termed ‘weak’ in 
contrast to ‘strong’ interactions which cause physical changes in the fluid, 
changes in the absorption coefficient and the occurrence of turbulent flow. 
Physical changes will be completely disregarded in our investigation and initial 
intensities will be restricted to values which make the fluid velocity remain in the 
laminar domain and keep the absorption coefficient constant. Two basic papers 
which deal with the onset of induced turbulence deserve mention here: Chodzko 
& Lin (1971) and Wagner & Marburger (1971). The former is also concerned with 
temperature-dependent absorption. 
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The co-ordinate system is cylindrical ( z ,  r ,  #), all functions being independent 
of q5 because of the assumed axial symmetry of the intensity distribution. The 
intensity initiates from the plane z = 0 and propagates in the + z direction. The 
initial intensity in the plane z = 0 is assumed to be of the form X, exp ( - r2ai2) 

with X, being in W cm-1. The length a, (em) is the half-width of the Gaussian 
intensity profile a t  z = 0. If we are thinking of light being emitted from a small 
aperture, a, may be considered as small to obtain an intensity distribution that 
is sharply peaked in the neighbourhood of the aperture. 

If the initial intensity distribution is indeed sharply peaked, it seems natural 
to  try to apply boundary-layer theory to describe the coupled process of distribu- 
tion of intensity, temperature and fluid flow. This approach is similar to that 
taken in the description of jets, for example, where there are also no solid 
boundaries (Pai 1954; Schhhting 1960). 

2. Boundary-layer theory approach 
Let v = v ( r , z )  (cms-l) and w = w(r,z)  (cms-l) be the horizontal ( r  direction) 

and vertical ( z  direction) components of the fluid velocity vector. The steady- 
state Prandtl boundary-layer equations for the conservation of mass (continuity) 
and momentum (Navier-Stokes) are 

where g (cm s - ~ )  is the acceleration due to gravity and 

8 = O(r, z )  = (T - T,) Tzl 

represents the dimensionless temperature relative to the temperature T, ("C) at 
infinity. The buoyancy force per unit volume is pg8. 

The conservation of energy equation is 

in which I (W 
The pressure gradient dpldz has been neglected as is customary in applications 

of boundary-layer theory because of the assumption that the constant pressure 
of the surrounding fluid impresses itself on the boundary-layer flow. 

represents the local light intensity for z 2 0. 

The affine transformation 
fl  = ra-l(z) 

will be introduced; here the positive function a(z) has the dimension of length (em) 
to render fl  dimensionless. Equation (I)  can then be satisfied by means of the 
stream function (dimensions cm3 s-l) 

(4) 
52-2 
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(with h in em), which gives the velocities 
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w = r-la@/ar = Vha-2[-lf‘, 

v = - r-l a@/& = - vh’a-l[-lf+ vha-,a‘f‘, 

( 5 )  

(6) 

where a prime signifies differentiation with respect to z for the functions a and h 
and differentiation with respect to for the function f. The use of only one 
differentiation symbol will not cause confusion since the functions a, h, f and 
later P depend on one variable only. It will greatly simplify the outward appear- 
ance of the following differential equations. 

Using now ( 5 )  and (6) in (a ) ,  we obtain 

a-4h[[-lf”’ - (-2f” + h’[-Zff’’ + (aa-la‘h - h’) t - 2  f ‘2 

- h‘t-”ff’ + 6-Y’ + g ~ - ~ a ~ h - W ]  = 0. (7) 

This gives us a differential equation for the function f(c). Por this equation to 
specify f (0, its coefficients must be independent of z. This requires, first of all, that 
the dimensionless temperature 8 be of the form 

w, 2) = H(z) P(tL (8 )  

where H and F are dimensionless. Since there are coefficients that are already 
independent of z ,  it follows next that all those coefficients that appear as functions 
of z must be identically constant. Therefore, we have the conditions 

(i) H = ~t ,a-~h,  a, = constant (cm3), (9) 

(ii) h‘ = a, 2 0,  a, = constant, (10) 

(iii) a-la’h = as, a3 = constant, (11)  

and, for the third and fourth coefficients, 

with a2 and a3 dimensionless. 
Equation (3) leads to 

u-~H[F” + ( I  + Ph’f)t-lP‘ - PhH-lH’fl-lf‘P + a(kT,)-’ u ~ H - ~ I ]  = 0, (12) 

where P = VK-1 = Prandtl number and K = k(c,p)-l = thermal diffusivity (in 
cmzs-1). For (12) t o  specify P(t ) ,  the coefficients must be independent of z. This 
requires that the intensity I be expressible as a product of a function of z and 
a function o f t .  Therefore we set 

I ( r , z )  = e-.*X(z) Y([ ) ,  

where the factor exp ( - a x )  is due to absorption by the fluid, X ( z )  (W cm2) is due 
to changes in the beam diameter and Y([ )  is the (dimensionless) intensity form 
factor. Since Y ( [ )  must agree with the initial form factor exp ( -rzut) for z = 0, 
we have 

Now, to make all coefficients of (12) independent of z ,  it is necessary that 

Y ( [ )  = exp (--[2), [ = ru-l(z). 

(iv) eca2X = a4Ha-,, a4 = constant (W), (13) 

(v) hH-lH’ = as, a6 = constant, (14) 
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with a5 dimensionless. For easy reference, we collect here the constants a,, . . . , a5 
which appear now as coefficients in the differential equations (7) and (12) for 

a3 = a-la’h (dimensionless), 
f(0 and WJ: 

a, = a4h-1H (cm3), a2 = h’ (dimensionless), 

a4 = e-aza2H-1X (W), a5 = hH-lH’ (dimensionless). 

They will be specified next. 

3. Evaluation of the constants 

respectively, lead immediately to 
Conditions ( 1  1)  and (14), considered as differential equations for a(z) and H ( z ) ,  

a (z )  = a,exp (a3j:h-ldi.), a, > 0, (15) 

H(a) = H,exp ( ~ x , j : h - ~ d i . ) ,  H, > 0. 

Relation (9), as z+ 0, shows that 

H, = alh,ai4, h, = h(0) > 0. 

If the constant h’ = a2 [see (lo)] were positive, then h would be a linear function 
of z, which, according to (15) and (16), would imply that a and H would be rational 
functions of z. From our original assumption that light energy is instantaneously 
transformed into heat it follows that no self-focusing of the light beam can occur. 
I n  other words, the function X ( z )  appearing in the expression for the intensity 
I must be a non-increasing function of z.  According to (13), this requires that 
Ha-2 decreases a t  least as fast as exp ax increases. Therefore, Hand a cannot,both 
be rational functions. Consequently, the constant h‘ = a2 must be zero, which 
makes h(z) identically constant, h(z) = h, > 0, and hence, according to (15) and 
(1617 

Furthermore, it  follows now from (9) that 

a (z)  = a,exp (a,h;lz), H(z) = a,h,ai4exp (a6hi1z). (17) 

(18) H ( z )  = a , h , ~ ~ ~ e x p  ( - 4ar3hi1z). 

Therefore, if we compare this expression for H with that in (17), we see that 
a5 = - 4a3. Next it follows from (13) and (18), as z - f  0, that 

a4 = aiX,Hil = (a,h,)-la~X,, X ,  = X(0). 

Finally, let us eliminate the constant a3. To this end, we observe the following. 
If no thermally induced modification of the light beam occurred, the intensity 
would be reduced by absorption only, i.e. a t  z > 0, it would be 

I * = e-ae X, Y(ra,l) 

and hence the energy passing per unit time throughra plane parallel to z = 0 
would be 
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If we assume that thermal modification of the beam does not greatly affect the 
total flow of energy but only its local distribution, it follows that 

The equality J = J* implies then that 

a2(z) X(z) = aEX, = constant. 

As (13) shows, this relation means that H(z)expaz is identically constant. 
Therefore, using (is), we see that 

a3 = $ah,. (19) 

We are thus left with the constants al, a2 = 0, a3 = iah,, a4 = (a,h,)-la~Xo and 
a5 = - ah,. It will turn out that a, and h, are irrelevant, so that only the physic- 
ally meaningful parameters a, the absorption coefficient, a,, the initial intensity 
form factor parameter, and X,, the initial intensity at  r = 0,  remain. 

4. General results 

the boundary-layer thickness is characterized by 
We are now in a position to discuss the main results. According to (17) and (19), 

a(z )  = aoexp ( iaz) ,  (20) 

i.e. it increases exponentially with increasing distance from the plane of Iight 
emission. 

The temperature decreases exponentially in the direction of light propagation 
as indicated by the function 

H ( z )  = exp ( -ax), 

The intensity of light decreases in the propagation direction according to 

eca2X(z) = X, exp ( -$ax) 

and this decrease is partly due to the defocusing effect, which is characterized by 

X ( z )  = X,exp ( - &a). 

To complete the investigation it is now necessary to return to the differential 
equations (7)  and (12) for f(6) and F(6).  Using the values of the parameters 
a,, . . . , a5 given near the end of $3 ,  we obtain from (7) and (1 2) 

which follows from (18) together with (19). 

<-‘f”’ - 6-y“ + +ah, t-zf’2 + 5-3f’ + algV-2F = 0, 

F“ + 6-1F’ + ah,P[-lf’F + ~(kTm)-~(~lh,)-l~~Xo Y = 0. 

To eliminate the constants a1 and h,, we introduce new functions q(6) and 
&(() by setting 

f(6) = P(6L F‘(6) = (“qa,h,o)-l l’2&(6) (31) 
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and arrive a t  the following coupled system of nonlinear ordinary differential 
equations for q ( g )  and Q(t) :  

,C-lq” - ( -2q”  + 6 5 - 2 q ’ Z  + g-34’ + Q = 0, 

Q” + [-lQ’ + Pt-’q’Q + VY = 0, 

( 2 2 )  

(23) 

a = (Ev2Tm)-1a2ga~X,. (24) 

with the driving term Y(<) = exp ( - 5 2 )  and the dimensionless parameter 

As a consequence of the transformations ( 2 1 ) ,  the stream function <D, given 
by (4), and the dimensionless temperature 6 ,  given by (S), take the forms 

O(r,  z )  = va-lq(t) ( 2 5 )  

and O(r, x )  = v2(aga,4)-l exp ( - az) &(<), 

where 5 = ru-l(x). Consequently, if we consider (5) and (6),  we obtain from (25) 
the flow velocity components 

w(r, x )  = ~a-~cc-~(z)  a’(z) q’(c),  

w(r, z )  = va-la-Z(z) <-I$([), 

v( r ,  z )  = &a;l exp ( - iaz)  q’(() ,  
or, if we use ( 2 O ) ,  

w(r, z )  = va-1a;l exp ( - iaz)  ,i-lq’([). ( 2 7 )  

Since no closed-form solutions of the system ( 2 2 )  and (23 )  are known, we are 
going to introduce an approximate solution for sufficiently small 151 since we are 
essentially interested only in the flow velocity and the fluid temperature near 
r = 0 under the boundary conditions 

q ( 0 ,  q ’ ( 0 ,  Q’(8 -+ 0 as t+ 0. (28) 

The limiting relation concerning q‘ follows directly from (26) since, for symmetry 
reasons, w(r, z )  + 0 as r -+ 0. We also see from ( 2 7 )  that q’ must behave like a linear 
function near 6 = 0 because w(r, z )  must approach a finite and positive limit as 
r+O. The condition on q follows from the definition of the stream function <D 
given in (4) if we also consider (21 ) .  It would also follow from the general ex- 
pression for the horizontal velocity component w as given in (6).  The condition on 
Q is a consequence of the assumption that the initial intensity distribution is 
an even function of 5, so that a6/ar+ 0 as r+O. We then consider (8) and (21). 

It is now useful to look a t  the functions 

q*( t )  = p(1 -e-ta), 0 d /3 < +a, (29) 

and Q*(t) = y e + ,  0 < y < +m. (30) 

They satisfy the boundary conditions (28) and they can be made to be s-approxi- 
mate solutions of (22) and (23) in some neighbourhood of 5 = 0 if the coefficients 
p and y are suitably chosen. To see this, we evaluate the left-hand sides of (22) 
and (23) in terms of p* and Q*. This leads to the functions 

$l((; p, y )  = ( - 8p + 2p2 e-5’ + 8PC2 + y )  e-f’, 

$2(5; p, y )  = ( - 4y + 2 P p y  e-f2 + 4yt2  + a) e-f2. 
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Here we let g-+ 0 and obtain 
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$1(0; P, y )  = - SP + 2P2 + y ,  

$2(0; P, y )  = - 4Y + 2PPY + a. 

Then, if P* and y* are the solutions of the system of algebraic equations 

- s p + 3 p + y  = 0, -4y+2PPy+a = 0, (31 a ,  b )  

the functions q51(E; P*, y * )  and q52((; p*, y * )  can be made absolutely less than 
any given E > 0 if 

Equations (31) permit us to determine the parameters /3 and y occurring in the 
approximations q* and Q* for q and Q, respectively, as functions of the non- 
negative parameter a, which, according t o  (24),  combines the physically relevant 
parameters, in particular the peak intensity X, of the light beam. Equation (31 a )  
leads to 

is sufficiently small. 

(32) P = 2 - ( 4 - $ ~ ) 4 .  

The negative sign in front of the square root must be chosen because if y = 0, 
i.e. if there is no increase in temperature, there will be no fluid flow. Equation 
(31 b )  leads then to the third-order equation 

(33) p ( 7 ; ~ )  = 2 P 2 ~ 3 - 1 6 ( 2 P - 1 ) y 2 - S ( l - P ) ~ ~ + ~ 2  = 0 

for y as a function of a. For a = 0, p ( y ;  0) has the zeros 

y1,2 = 0 and y3 = S(3P- 1) P-2. 

The zero y3 is positive provided that the Prandtl number P is greater than 4. 
Thus, for cr = 0, i.e. for X, = 0, y* = 0 and, according to (32), P* = 0 as they 
should be in the absence of a driving term in (23). 

If cr E (0, +a), an application of Sturm’s theorem (cf., for example, Lehnigk 
1966, p. 112) shows that p ( y ;  CT > 0) has one negative zero y1 < 0, and two 
positive zeros y 2  and y3, 0 < y2  < y3. The smaller one of these, y 2 ,  i.e. the one that 
branches to the right from the double zero a t  the origin for cr = 0, is, for continuity 
reasons, the one we have to use. Thus, y* = y*(a)  = y2  for ~ E [ O ,  +a) and, 
according to (32), 

p* = P*(cr) = 3 - (4 - +y*(cr))$ for 5 > 0, y*(cr) < 8 (34) 

are the parameters that make the functions q* and Q* of (29) and (30) e-approxi- 
mate solutions of (32)  and (23) in some neighbourhood of 6 = 0. Both /3* and y* 
increase monotonically as a increases. Of course, in practice CT is not allowed to 
increase indefinitely because of the original assumption of an incompressible 
fluid, which requires the Mach number to be small compared with unity. In  our 
problem, this requires that the maximal vertical flow velocity w(r, z) ,  which 
occurs a t  r = z = 0 [see (27)], be small compared with the velocity c of sound in 
the fluid. As a matter of fact, a < 10-1 in the example to be considered in the 
next section. 

The smallness of a makes it possible to obtain good approximate expressions 
for y* and P* as functions of cr. For, if a is small, we may set y = ha in (33) and 
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neglect the cubic term. This gives a quadratic equation for A ,  the positive root 
of which we need. It turns out that this positive root is $, independent of the 
Prandtl number. Therefore, 

y* = ?*(IT) = $IT, for small IT > 0, 

and, according to (34)) 

,8* = P*(IT) = 2 - ( 4 - @ ) t  for small CT > 0. (35) 

As a function of CT, the maximalvertical flowvelocity, which occurs at  r = z = 0, 
now becomes 

w(O,  0) = 2 v a - l ~ ; ; ~ [ 2  - (4 -&IT)+] for small IT > 0. (361 

We have used here (27) with q ( [ )  replaced by q*(c) as given by (29) and with 
,8 = ,8* as given by ( 3 5 ) .  

We can now also indicate the dependence of the stream function and the 
dimensionless temperature on CT for small CT: 

5. Numerical results 
In  this section, we wish to specialize our general results for the case of con- 

vective flow induced by CO, laser heating a t  10.6pm in air. We use the following 
numerical values. 

Kinematic viscosity 
Conductivity k = 6 x cal s-l cm-1 "C-l. 

Air temperature a t  infinity 
Absorption coefficient 
Acceleration due to  gravity 

v = 15 x 10-2cm2s-1. 

Velocity of sound c = 33 x 103 cms-1. 
T, = 20 "C. 
a = 2 x 10-6cm-1. 
g = lo3 cm s - ~ .  

Of primary interest in this investigation are the induced convective fluid flow 
and the fluid temperature as functions of the half-width of the intensity profile 
at z = 0 and the intensity X, a t  r = z = 0. 

The vertical velocity component w(0,O) a t  r = z = 0 of the fluid flow as given 
by (36) is of particular interest. To avoid calculating values for w(0,O) too large 
for the assumption of laminar flow, we choose a critical Reynolds number 
Rcrft = 2 x  lo3. We define the Reynolds number R of the flow at z = 0 as 
R = w(0,O) c?v-~, where 6 = 2a, is the boundary-layer thickness a t  z = 0. Then, 
from (36) and (35)) R = 4a-la;;1/3*. The condition R < R,,,, = 2 x lo3 leads to 
/3* < 4 103aa, = 10-3a, = /I&,, and, consequently, w(0,O) 6 103va;l = 1 5 0 ~ ; ; ~  
(cms-l). The laminar-flow boundary is the dashed hyperbola in figure 1.  If we 
take the Mach number to be not greater than 10-l) the laminar-flow bound is 
much less than the incompressibility bound. 
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0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 

11 574 
5 354 
2 746 
1 524 

900 
558 
362 
242 
168 
118 

1.6 
1.7 
1.8 
1.9 
2.0 
2.2 
2.4 
2.6 
2-8 
3.0 

86 
64 
48 
36 
28 
17.4 
11.4 
7.6 
5.2 
3.8 

TABLE 1 .  Maximal intensities for laminar flow as function of half-width a, of 
intensity profile a t  z = 0 

To determine next maximal values for X, as a function of a, for laminar flow 
conditions, we investigate the inequality 

p* = 2 - (4 - &+ < p:ax = 10-3a0, 

with (T as function of a, and X ,  given by (24). This inequality leads to 

X, < 225ai5(4 - 10-3a,) (W 

If a, is taken to be sueciently small, this inequality may be simplified to 

X, < 900ai5 (Wcm-2). 

I n  table 1, the maximal values XOmax = 900ai5 are displayed for 0.6 < la,] < 3.0. 
It is also useful to display the dependence of the parameter c, given by (24), 

on a, and X,. With the numerical values chosen a t  the beginning of this section, 
we have 

(T = (6750)-la$X,. 

In  table 2,  c is given as function of a, for 0.4 < la,/ < 2.8 and for five typical 
values of X, up to the order of lo4 W 

Figure 1 shows the dependence of the vertical velocity w(0,O) given by (36) on 
a, for the five X ,  values used in table 2. The laminar-flow region is below the 
dashed hyperbola. Above it is the turbulent region. 

Using (37) and the relation 

AT = T,f?(r,z) ("C) 

we can now also calculate the temperature difference AT a t  r = z = 0. With 
the numerical parameters chosen we have 

o(o, 0) = 281 x 10-20.a;4. 

Figure 2 exhibits AT as function o f  a, for the intensities XOi (i = 1 ,2 ,3 ,4 ) .  For 
X,, and [aOl = 0.4 and [aO\ = 0.6, we have AT = 3.70"C and AT = &.32"C, 
respectively. We observe that a relatively small temperature increase is caused 
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XOl X O Z  x03 S O ,  

Watts em-2 ... 5.2 17.4 86 900 
cal see-' 1.25 4.18 20.64 216 

a 0  (em) 1 0 5 ~ ~  1 0 5 ~ ~  105 105 u4 
0.4 0.08 0.25 1.3 13.2 
0.6 0.86 2.9 14.4 150 
0.8 4.8 16 80 840 
1.0 18.4 61.8 300 3200 
1.2 56 183 900 - 
1.4 138 465 2300 - 
1.6 310 1038 5140 - 
1.8 626 2102 
2.0 1178 3956 
2.2  2086 7000 
2.4 3516 
2.6 5684 
2.8 8866 

- - 
- - 
- - 

- - - 
- __ - 

- - - 

TABLE 2 .  The parameter u as function of a, and -Yo 

0 0.5 1.0 1.5 2.0 2.5 3.0 

a, (em) 

FIGURE 1. Vertical flow velocity w(0, 0) at the origin as function of intensity-profile 
half-width a, at z = 0 for intensities Sol = 5,2, Xo, = 17.4, X,, = 86, S, = 900, X,, = 
11 574 W 

by the light propagation. The values of' AT for la,] = I can, of course, be obtained 
directly from the differential equation (3) for r = z = 0 with the numerical value 
31 x 1 0-2 cal g-1 "C-l for the specific heat cp of air. 
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,‘O I 

a0 (cm) 

FIGURE 2.  Temperature difference AT at the origin as function of intensity-profile half- 
width a, at z = 0 for intensities X,, = 5.2, Xo2 = 17.4, Xoo3 = 86, X,,, = 900 W 

6. Concluding remarks 
Under simplifying assumptions, we have calculated the free convective %ow 

field and temperature distribution induced by vertically. propagat,ing light in 
a mildly absorbing fluid. We have explicitly determined the stream function, 
which leads to the flow velocity components, and the dimensionless fluid tem- 
perature under boundary-layer assumptions in terms of the physically relevant 
parameters and as functions of the spatial co-ordinates. 

Assumptions closer to reality might include a pre-existing flow transverse to 
the direction of light propagation or horizontal propagation instead of vertical 
propagation. 

With respect to the forced convection problem it should be observed that the 
buoyancy forces become negligibly small if the transverse flow velocity is suffi- 
ciently large and that, consequently, approaches different from the one used in 
this paper become appropriate. We refer again to the papers of Livingston and 
Wallace & Camac, for example. It should also be pointed out that the constant 
(forcing) term appearing in the appropriate fluid mechanical equation due to 
a constant transverse flow ruins the similarity transform approach. 

An investigation of steady-state horizontal light propagation by means of 
boundary-layer theory and similarity transform methods is in progress and we 
shall report on its results as soon as it has been completed. This problem is, of 
course, much more complicated than the idealized one we have studied in the 
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present paper; first, because of the different geometric situation, which requires 
that the stream and temperature functions be expressed as functions of three 
co-ordinates, and, second, because the induced free convective flow is here 
perpendicular to the direction of light propagation, which causes typical 
deformations in the contours of constant intensity (see Livingston 1971). 
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